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Abstract  

In its simplest form, the low-rank perturbation (LRP) method solves the perturbed matrix 
eigenvalue equations AtP - (B + V)tP = t;tP, where A, B and V are nth-order Hermitian 
matrices, and where the eigenstates and the eigenvalues of the unperturbed matrix B are 
known. The method can be applied to arbitrary perturbatiom V, but it is numerically most 
efficient if the rank p of V is "small". A special case of low-rank perturbations ~re localized 
perturbatiom (e.g. replacement of one atom with another, creation and destruction of ä 
chemical bond, local interaction of large molecules, etc.). In the case of local perturbations 
with a fixed localizability/, the operation count for the calculation of a single eigenvalue 
and/or a single eigenstate is O(12n). In the more general case of a delocalized perturbation 
with a fixed rank p, the operaüon count for the derivation of all eigenvalues and/or all 
eigenstates is O(p2n2). For large n, the performance of the LRP method is hence at least 
one order of magnitude better than the performance of other methods. The obtained 
numerical results demonstrate that the LRP method is numerically reliable, and that the 
performance of the method is in accord with predicted operation counts. 

1. In troduc t ion  

This is a preliminary report on the low-rank perturbation (LRP) method. A more 
comprehensive account of this method will be given elsewhere [1]. 

The LRP method deals with the solution of the perturbed eigenvalue equafion 

A W / -  (B + V ) ~  = ~. ~ ,  (1) 

w h e r e  A,  B and V are  n o rde r  mat r i ces ,  and  whe re  the so lu t ion  o f  the unperturbexl  

e i g e n v a l u e  equa t ion  

B ~  = A.,t,. (2) 
l | I 

is known. 
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More generally, the LRP method treats the generalized perturbed eigenvalue 
equation 

AW//--- (B + V)W/= e.(S + P)W i, (3) 

where the corresponding (generalized) unperturbed eigenvalue equation is 

B ~ .  = A,. S ~ . .  (4)  
l 1 l 

In this general formulation matrices B, V, S and P can be non-Hermitian, with the only 
restriction that matrix S be nonsingular and that matrix S-lt2B S -1t2 be nondefective [ 1]. 
By definition, a matrix is nondefective if it has a complete set of eigenvectors [2]. In 
the present paper, only relations (1) and (2) will be treated. 

Unlike the standard perturbation approach, the accuracy and the operation count 
of the LRP method does not depend on the norm of the perturbation V. A critical 
parameter is the rank p of V, and if this parameter is "smaU" with respect to n, the 
method is fast and efficient. Special cases of low-rank perturbations are local perturba- 
tions. If the perturbation V is local, Ehen at most l columns and l rows of V contain 
nonzero elements. With a suitable permutation of rows and columns, all nonzero matrix 
elements of V are contained in an l-by-l submatrix of V. By definition, the quanüty I is 
the "localizability" of V. One easily finds that p < I. 

Local perturbaüons are common in various quantum chemical problems. 
Depending on the quantum chemical model, a replacement of an atom with another, 
creation and destruction of a chemical bond, local interactions of large molecules, etc., 
are all examples of local perturbations. In the case of a local perturbation with a fixed 
localizability l, the operation count for a calculation of a single eigenstate and/or 
eigenvalue scales as O(12n). In the more general case of a delocalized petturbation with 
a fixed rank p, the operation count for the derivation of all eigenvalues and/or all 
eigenstates scales as O(p2n2) [1]. 

In comparison, standard diagonalization methods (Householder, Givens, Jacobi, 
etc.) require O(rt 3) operations for the derivation of all eigenvalues and/or all eigenstates. 
There are some other methods (power method, Lanczos, Davidson, etc.) which are more 
efficient if only a few selected eigenvalues and/or eigenstates are required. However, 
unless a few extreme eigenvalues are required, these methods are also O(rt3). Concern- 
ing the operation count of the various per~urbation expansion methods, it strongly 
depends on the order of the approximation. If most matrix elements (~ / IVI~)  are 
nonzero, already a second-order perturbaüon expansion requires O(n 2) operations for 
the calculation of a single eigenvalue and O(n 3) operations for the calculation of a single 
eigenstate. In either case, the operation count of the LRP method for large n is substan- 
tially smaller. 
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2. The method 

Each perturbation V can be written in the form 

m 

V = ~ og~lu~)(vsl, (5) 
s = l  

where ~ ~: 0. In general, vectors lus) and/or vectors ( v l  are linearly dependent. However, 
any linear dependence of  these vectors can be easily eliminated [1], and hence the 
perturbation V can, without loss of generality, be represented in the form (5), where 
m = p is the rank of V. Note also that (5) does not explicitly require V to be Hermitian. 
Hence, the following results apply to arbitrary V [1], although we will be mostly 
interested in the Hermiüan case. 

Many different forms (5) of the same perturbation V are possible. For example, 
if V is Hermitian, parameters ~ can be chosen to be nonzero eigenvalues of  V and 
vectors l u )  = l u )  to be the corresponding eigenstates. This is a "diagonal" representa- 
tion of V and it automaücally ensures m = p. 

There is another representation which is convenient if the localizability l of  the 
perturbaüon V is small. In this case, at most l components of vectors l u )  and 14) are 
nonzero. One can choose vectors (vsl to be unit row vectors and one can normalize 
vectors l u )  with ~ = 1: 

l 

V = ~ lus ) (v~l .  (5a) 
s = l  

With such a choice, vectors l u )  coincide with nonvanishing columns of V. This is a 
"column-wise" representation of V, and there is a similar row-wise representation. In 
general, p < I. However, p < l only if columns of V are linearly dependent, and thus 
usually p = I. 

In the LRP method, it is convenient to distinguish "cardinar' and "singular" 
eigenvalues and eigenstates. If the eigenvalue e 0 of the perturbed eigenvalue equation 
(1) differs from all the eigenvalues ~. of the unperturbed eigenvalue equation (2), it is 

t 

cardinal [1]. Otherwise, i.e. if e o ~ {~.i}, it is "singa~Aar". The corresponding eigenstates 
are in the same way parütioned into cardinal and singular, respectively [1]. Singular 
soluüons are essentially accidental, and the perturbed eigenvalue equation (1) usually 
has either no singular solution or only a few such solutions. Cardinal solutions are much 
more important, and in many cases they are the only solutions of  (1). 

We first consider cardinal solutions [ 1]: 

THEOREM 1 (CARDINAL EIGENVALUES AND EIGENSTATES) 

Let A = B + V be an nth-order Hermitian matrix, the sum of Hermitian matrices 
B and V. Further, let )~i and cb i be, respectively, the eigenvalues and the corresponding 
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orthonormalized eigenstates of B, and let the perturbation V be represented in the form 
(5). Then, 

(a) Each cardinal eigenvalue e o of A is a root of the LRP equation 

D ( e )  = I S ( e )  - 6 p / ~ l  = O, s , p  = 1 . . . . .  m ,  (6a) 

where 

i= I e-/3,i , s, p = I ..... m. (6b) 

Inversely, eäch root e o ~ {/~i} of the LRP equation (6) is a cardinal eigenvalue 
of A. 

(b) Let e o be a cardinal eigenvalue of A. Then each eigenstate W corresponding 
to this eigenvalue is of the form: 

I~) - ~=11_p=1 cop(Oal u?) (v?l~)l(~o -A,i) I~i). (7) 

Moreover, the scalar products (vpl q') satisfy 

rt l  

[copS,p(eo)-Ssp](vplW)=O, s = l  . . . . .  m. (8) 
p = l  

Inversely, each state q~ of the form 

tl  

v = N E n;Io;>, 
i---1 

t l  

N ~= 1 / Z  a, ~, 
i=l 

(9a) 

where the coefficients C am the (nontrivial) solution of 
P 

m 

[ogpSsp(~o)-S~p]Cp - 0 ,  s = 1 . . . . .  m, 
p=l  

(9b) 
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is a normalized cardinal eigenstate of A corresponding to the eigenvalue e o. 
Moreover, the coefficients C are the scalar products C = ( ~ 1 ~ ) .  

Relation (6) can be used to find all cardinal eigenvalues e i of the perturbed 
eigenvalue equation (1). The operation count for the derivaüon of these eigenvalues 
depends on the operation count for the construction of the determinant D(e). If V is 
local, this operation count scales as O(12n), where l is a localizability of V [1]. Hence, 
if the localizability I is "smalr', a derivaüon of a single eigenvalue e/requires essentially 
O(n) operations. If V is not local (l = n) but still has small rank ( p « n), there is an 
overhead of  O( pn 2) operations which is required to calculate scalar products (vsl~/) 
and (tl~ilu) in (6b). However, th_is calculation is performed only once, irrespective of 
how many eigenvalues of A are required. Hence, if the rank p is "small", a derivation 
of all cardinal eigenvalues of A requires essentially O(n 2) operations. 

Once a parücular cardinal eigenvalue e 0 is known, the corresponding eigenstate(s) 
can easily be obtained using relations (9). First, one solves (9b) for the unknown C .  
This is an m-order linear system, and provided m is "small" the coefficients C can 
obtained quickly. Once C are known, one finds W by simple insertion into (~a). The 
solution is unique and th~ function W nondegenerate if (9b) has a unique solution. 
Otherwise, the function W is degenerate. Depending on'the application, one can choose 
either m = p or m = l > p. The LRP method is hence fast if the rank p is small, and in 
particular if the localizability l is small. 

The storage requirement of the LRP method is also favorable. If  V is local, the 
storage requirement to store I components of each of n vectors Oi is nl. Next, one has 
to store 2nl scalar products (v IO/) and (~ . l u ) .  All the remaining storage requirement 
is relatively small. Thus, the storage requirement for vectors I u ) is 12, while the storage 

. P 

reqmrement for the eigenvalues Ai is n. The total storage requirement is hence O(nl). 
The storage requirement of direct approaches is at least n 2, since as an absolute 
minimum all matrix elements of the matrix A should be known. Since by assumption 
l << n, the LRP storage requirement is substantially smaller. This is also true for 
delocalized low-rank perturbation. If  V is delocalized, a separate program, which uses 
relatively slow but large extemal memory, can generate scalar products ( 4 1 0 / )  and 
(O/ lu ) .  Once these scalar products are formed, the remaining storage requirement is 
essentially 2pn. 

Above, we have discussed cardinal solutions of (1). Singular soluüons are 
obtained by the following theorem [1]: 

THEOREM 2 (SINGULAR EIGENVALUES AND EIGENSTATES OF A) 

Let e o = ~'k be a singular eigenvalue of A. Further, let Ak be a v-degenerate 
eigenvalue of B, and let O«,¢ (te = 1 . . . . .  v) be the corresponding orthonormalized 
eigenstates. Then: 

(a) «o is a root of the equaüon 
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Co) 

B ( e )  = 

s o  (e)  - ,~,p ~co, 

(ei, k,~l Up ) 

(u,l ~k,~) O = 0, (10a) 

where 

stOp(e) = ~ ( v~ lOi ) (Oi lup)  s , p =  1 . . . . .  m.  (10b) 
i ~ k  E -  31,i ' 

Inversely, ifthe eigenvalue Ak of B is a root of D°(e), then e o = ~'k is a singular 
eigenvalue of A. 

Let e 0 = &« be a singular eigenvalue of A. Then, each eigenstate W corre- 
sponding to this eigenvalue is of the form 

m 

n Z COp(~i[Up)(l~plW> v 

Iq')= ~ p=l I ~ / ) +  ~(~k~:lV)lcI'k,~)- 
i~k (CO -- Zi)  ~'=1 

(11) 

Moreover, the scalar products (%1 W) and (cD«rlq') satisfy 

m 

E tCOpS°p(eo) - 6«p](v;l'e) 
p = l  

V 

+ ~ ( V s [ ~ k r ) ( O k r [ W )  = 0 ,  S= 1 . . . . .  m, 
~C= 1 

(12a) 

m 

co~(~kwlu~) (v~lW) = 0, ~c= 1 . . . . .  v .  

s = l  
(12b) 

Inversely, each state q~ of the form 

tl V 

i~k pc= 1 

~-2i =[p~=lOßP( t~ i l up )Cp] / (EO-~ i ) ,  

(13a) 

where C and D a r e  the solution of p ~¢ 
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m V 

Z [(-.°pS°sp(e-o) - Ssp]Cp + Z ('Os [~kr)D~: = O, 
p = l  ~¢=1 

S =  1 , . . , m ,  

m 

~., cop<*k,: I up>Cp = o, ~: = 1 , . . ,  v, 
p = l  

(13b) 

is a singular eigenstate of A corresponding to the eigenvalue e o. Moreover, 
the coefficients C and D are p Jc 

C = (~1 '~) ,  D r =  (q)krl+>. (14) 

For the sake of simplicity, we did not nonnalize the state qJ in (13a). The 
normalization is trivial. 

The above two theorems completely solve the eigenvalue equation (1) ~. The first 
theorem refers to cardinal eigenvalues and eigenstates of A, while the second theorem 
refers to singular eigenvalues and eigenstates of A. These eigenvalues and eigenstates 
are expressed in terms of the eigenvalues and eigenstates of the unperturbed matrix B, 
and in terms of vectors l Us) and I vs) and quantities ~ which define the perturbation V. 
Unlike the perturbation expansion method, the perturbation V is not required to be 
small, and the above relations apply to an arbitrary perturbation V. The method is, 
however, efficient i f the rank p of V is small with respect to n. In particular, it is efficient 
if the localizability I of V is small. 

Although the above relations are formulated for Hermitian matrices, they are in 
fact valid for more general cases [1 ]. In particular, the perturbation V can be arbitrary 
non-Hermitian, as suggested by the explicitly nonsymmetric representation (5). In this 
general non-Hermitian case, one should carefully distinguish between left and right 
eigenstates [ 1 ]. 

The possibility to represent the perturbation V in many different forms (5) gives 
a substantial flexibility to the LRP method [1 ]. Due to this possibility, there is no need 
for a preliminary diagonalization of V. This is especially important if the LRP method 
is used to derive isoenergy surfaces [3]. It is also important from a more general point 
of view. Since the representation (5) is explicitly nonsymmetric, the method can be 
easily generalized to non-Hermitian and nonsymmetric matrices [1]. 

It should be noted that the eigenvalue problem with a low-rank perturbation has 
also been treated by some other authors, although not in such a general form. Dr. G.H. 
Golub pointed out to the present author that similar problems have been studied in the 
mathematical literature [4-7]. In the case of Hermitian matrices, where in addition 
l u )  = I rs), a formula equivalent to (6) has apparently been stated for the first time by 
Beattie and Fox [4], and independently by Arbenz and Golub [5]. Subject to the same 
limitations, these latter authors have also derived a formula apparently equivalent to 
relations (10). Formulae obtained by these authors are much more abstract, and they 
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explicitly apply only to the Hermitian case and to the symmetric representation of the 
perturbation V. Substantially more restrictive formulae have previously been derived by 
some authors [6,7]. A comprehensive list of relevant references in the mathematical 
literature can be found in ref. [5]. 

Recenüy, Dr. D.J. Klein communicated to the author that a similar problem has 
also been considered in the chemical literature [8-11]. Thus, Koster and Slater 
treat the motion of electrons in a perturbed periodic lattice [8,9]. They explicitly use 
translational symmetry and Wannier funcüons. A similar problem was treated by 
Lax [10]. Löwdin [11] has a slightly more general treatment. However, his approach 
requires an explicit evaluation of the resolvent (B - ~,I) -1 associated with the unper- 
turbed Hermitian matrix B. Unless this resolvent can be easily calculated, his approach 
is impractical. In addition, all these papers are restricted to local perturbations and they 
do not consider more general low-rank perturbations. It is interesüng that although these 
papers were published rauch earlier, they were apparently unknown to the authors in the 
mathe-matical literature. Thus, in the recent paper by Arbenz and Golub [5], which 
contains quite a comprehensive list of  references, these papers were not cited. 

3. Numerical results 

In order to check the accuracy and the efficiency of the LRP method, a computer 
program was written by the author, and applied to random matrices. The program was 
written in C and run on the personal computer NEC Multispeed. 

Matrices B of order n = 20 through n = 200 in increments of 10 were considered. 
Matrix elements of  these matrices were created as random numbers in the interval 
(-10.0, 10.0). Perturbaüons V were also constructed as random matrices. A nonsym- 
metric representation (5) was explicitly used; this avoids the need to diagonalize V. For 
the sake of simplicity, perturbations V were chosen to be local with a localizability 
l = p. The choice of  local perturbations decreases the time needed to calculate matrix 
elements (u  I~.) and ( ~ . l u ) .  Otherwise, it is of  no consequence for the performance of 

s 1 1 p . 

the LRP method. Perturbations hawng rank p = 1 up to and including p = 7 were 
considered. 

Results of  the LRP calculation were verified by an independent Householder-QL 
diagonalization of A. For matrices of order n = 20 through n = 90, the Householder-QL 
calculation was performed in double precision. For these matrices, the LRP eigenvalues 
and eigenstates agree with the Householder-QL eigenvalues and eigenstates approxi- 
mately up to all fifteen significant figures. For matrices of order n = 100 through 
n = 120, the Householder-QL calculation was performed in single precision. For these 
matrices, the LRP eigenvalues and eigenstates agree with the Householder-QL eigen- 
values and eigenstates approximately up to all seven significant figures in single 
precision. Matrices of order n > 120 were too large to be diagonalized on the personal 
computer (with the present compiler, which limits a single data item to maximum 64K 
of memory). For these matrices, the LRP eigenstates were verified in an independent 
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manner. In the case of  Hermitian matrices, eigenstates satisfy (Wkl~t) = 0 whenever 
~ ê~. This re!ation was verified, and it was found that the normalized LRP eigenstates 

W, and W t satisfy ( ~  I~ )  = 10 -15. This also verifies the corresponding eigenvalues since, 
unless these eigenvalues are equally reliable, eigenstates Wk and ~ cannot be ortho- 
gonal (except possibly accidentally). 

The performance of  the LRP method was checked by monitoring times needed 
to calculate a single eigenvalue and/or a single eigenstate. The results are shown in figs. 
1 and 2. Times (in seconds) needed to calculate a single eigenvalue by the LRP method 

28 

t 
(sec) 

24 

0 
rl 

Fig. 1. Times needed to calculate a single eigenvalue by the LRP method. Lines 1 
through 7 correspond to perturbations having rank 1 through 7. Line H corresponds to 
the hypotheticN "per eigenvalue" Householder-QL calculation. 
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Fig. 2. Times needed to calculate a single eigenstate by the LRP method. Lines 1 
through 7 correspond to perturbations having rank 1 through 7. Line H corresponds to 
the hypothetical "per eigenstate" Householder-QL calculation. 
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are shown in fig. 1. These times are plotted as a function of the degree n of matfices B 
and V. Lines 1 through 7 correspond to perturbaüons having rank 1 through 7. Line H 
is drawn for comparison. This line corresponds to the "per eigenvalue" Householder-QL 
calculaüon. In the Householder-QL method (presently the best method for the deriva- 
üon of all eigenvalues or all eigenvalues and all eigenstates of a real symmetric matrix), 
one obtains simultaneously all eigenvalues of A. "Per eigenvalue" Householder-QL 
times are times needed to derive all eigenvalues of A divided by the number n of these 
eigenvalues. The corresponding times (in seconds) needed to calculate a single eigen- 
state are shown in fig. 2. These times are also plotted as a function of the degree n of 
matrices B and A. Lines 1 through 7 correspond to perturbations having rank 1 
through 7. Line H corresponds to the hypothetical "per eigenstate" Householder-QL 
calculaüon. "Per eigenstate" Householder-QL time is the time needed to obtain all 
eigenstates of A, diminished by the time needed to obtain all eigenvalues of A, and 
divided by the number n of these eigenstates. 

For fixed n, the LRP times should scale as p2 [1]. This apparently contradicts the 
results in figs. 1 and 2, which do not scale as quickly. The discrepancy is due to the 
numerical overhead for low p. With increasing p, this discrepancy should disappear. 

As expected [1], for each fixed rank p of the perturbation V, LRP times are linear 
in n. The corresponding Householder-QL ümes are quadratic in n. The LRP method is 
hence superior to the Householder-QL method, provided n is sufficiently large. 

If a single eigenvalue and/or eigenstate is required, the relative efficiency of the 
LRP method substantially increases. This is particularly true if V is localized, in which 
case the LRP calculation of a single eigenvalue and/or eigenstate is O(n). 

The Householder method is not very suitable for the calculation of a single 
eigenvalue and/or eigenstate. Usually, some other method, such as the power method, 
the Davidson algorithm, the Lanczos method, inverse iteration, perturbaüon expansion, 
etc., is more efficient. However, none of these methods are truly O(n2). 

In the power method, one repeatedly calculates the action of the matrix A on 
previously obtained vectors. Each iteration hence requires O(n 2) operations. However, 
the number of iterations needed to obtain a required accuracy increases with n. The total 
operation count is hence higher than O(n2). In addition, the power method can be 
directly applied only for the calculation of extreme eigenvalues of A. In order to 
calculate an arbitrary eigenvalue e/by the power method, one has to replace the matrix 
A with the matrix (A - X) -~ [12]. This requires the calculation of the matrix inverse, 
which is again O(n 3) operations [2]. 

The Lanczos method seems to be more efficient than the power method. Each 
iterative step of this method requires O(n 2) operations. In order to obtain all n eigen- 
values, n iterations are required, which produces an operation count of O(n3). How- 
ever, intermediate results usually converge to extreme eigenvalues already after a 
few iterations [12]. The Lanczos algorithm is hence faster that O(n 3) if a few extreme 
eigenvalues are required. However, this method is again O(n 3) if an arbitrary 
eigenvalue and/or eigenstate is required. The same restriction applies to the Davidson 
algorithm, which is also faster than O(n 3) only if few extreme eigenvalues and/or eigen- 
states are required. 
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The petturbaüon approach is also at least O(n 3) unless the perturbation V is so 
smaU that one can tnmcate the perturbation expansion with the second term. In 
conclusion, if  an arbitrary eigenvalue and/or eigenstate is required and if ihe 
perturbation is local, the LRP method is faster than other approaches by two orders of  
magnitude. 

4. Conclusions 

The obtained numerical results demonstrate that the LRP method produces 
reliable eigenvalues and eigenstates of the perturbed matrix A. It is further shown that 
for each rank p of the perturbation V, the time needed to calculate all eigenvalues 
and/or all eigenstates by the LRP method is proportional to n 2, where n is the order of 
matrices B and A. If the perturbation V is in addition local, the time needed to calculate 
a single eigenvalue and/or eigenstate by the LRP method is proportional to n. For large 
n, these times are, respectively, one and two orders of magnitude faster than the 
corresponding Umes for other presently known methods. 

The storage requirement of the LRP method is also favorable. The storage 
requirement of  other appmaches is usually at least n 2, since as an absolute minimum all 
matrix elements of  the matrix A should be known. If V is localized, the LRP storage 
requirement is O(ln). If V is delocalized but low rank, the numerically trivial but 
storage-wise large task to generate scalar pmducts ( v l  O/) and (~ luv!  can be performed 
using a slow extemal memory. The rcmaining storage requirement is then O(pn) .  In 
both cases, this is substantially less than the storage requirement of other methods. 
Hence, one can use personal computers with relatively sman RAM memory to perform 
LRP calculations on relatively large systems. 

In conclusion, the LRP method is convenient for the treatment of  large systems 
perturbed by a low-rank perturbation. Provided the rank of the perturbation is "smalr', 
it produces reliable numerical results, it is faster than other methods and, finally, it has 
a smaUer storage requirement. The larger the system, the more pmnounced the 
advantage of  the LRP method (in comparison to other methods). 
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